Retaining Customers Using Clustering and Association Rules in Insurance Industry: A Case Study
Authors
Abstract:
This study clusters customers and finds the characteristics of different groups in a life insurance company in order to find a way for prediction of customer behavior based on payment. The approach is to use clustering and association rules based on CRISP-DM methodology in data mining. The researcher could classify customers of each policy in three different clusters, using association rules. At the end of study the characteristics are defined and given to the company, so they could implement CRM strategies based on the newly found differences. Attention to the income and cash earning comes before paying attention to other problems. In most of the companies in developing countries, infrastructural problems of the company like earning enough income prevent the company from effective research implementation on advanced strategies. So this study focuses on basic problems. Utilizing data mining approach to classify customers in life insurance is a new approach among insurance companies in Iran. There are some research in relation to the CRM and data mining, but the contribution of this study is to investigate two new attributes plus those common attributes used before in studying customer behavior; the two attributes are "payment type" and the "purchaser". In order to have a framework, all the process is embedded in CRISP-DM methodology.
similar resources
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
modeling insurance company expenses : the case study of iranian insurance industry
صنعت بیمه به دلیل عرضه محصول منحصر بفرد، در طبقه بندی مالی به عنوان یک صنعت با هزینه های بالا شناخته شده است. رفتار هزینه ها یک معیار مهم برای برای تعیین قدرت مالی شرکت بیمه استو این موضوع به ویژه برای بیمه گذاران و سرمایه گذاران از اهمیت اساسی برخوردار است. این مطالعه هزینه های شرکت های بیمه را در قالب سریهای زمانی پنلی انجام میدهد. تحلیل پنلی کمک برای درک رفتار نا متعارف، پیش بینی هزینه ها، و...
15 صفحه اولahp algorithm and un-supervised clustering in auto insurance fraud detection
this thesis is a study on insurance fraud in iran automobile insurance industry and explores the usage of expert linkage between un-supervised clustering and analytical hierarchy process(ahp), and renders the findings from applying these algorithms for automobile insurance claim fraud detection. the expert linkage determination objective function plan provides us with a way to determine whi...
15 صفحه اولassessing political stability and instability in central asia and caucasus; case study, azerbaijan and kyrgyzstan
منطقه ی آسیای مرکزی وقفقاز به عنوان منطقه ای تاریخی و به دلیل دارا بودن ذخایر عظیم هیدرو کربنی از اهمیت ویژه ای برخوردار است. کشورهای این منطقه از عوامل عمده ی بی ثباتی نظیر عوامل جغرافیایی، اقتصادی، امنیتی، اجتماعی و سیاسی رنج می برند. پس از فروپاشی اتحاد جماهیر شوروی کشورهای منطقه از نعمت استقلال ناخواسته ای برخوردار شدند که مشکلات فوق را برای آن ها چندین برابر می کرد. در این روند برخی از این...
15 صفحه اولMining the Banking Customer Behavior Using Clustering and Association Rules Methods
The unprecedented growth of competition in the banking technology has raised the importance of retaining current customers and acquires new customers so that is important analyzing Customer behavior, which is base on bank databases. Analyzing bank databases for analyzing customer behavior is difficult since bank databases are multi-dimensional, comprised of monthly account records and daily t...
full textMy Resources
Journal title
volume 5 issue 4
pages 261- 268
publication date 2015-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023